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INTRODUCTION:
Types of Biomedical Texts



Types Of Biomedical Text and its Sources

01 Biomedical Literatures (MEDLINE,PubMed, PMC)

02 Electronic Medical Record

03 Social Media (Twitter, Medical Discussion Forums, Blogs)

04
Text Title
Place your own 
text here
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BIOMEDICAL LITERATURE

Image credit: Wikipedia
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ELECTRONIC MEDICAL RECORDS 

Image credit: Wikipedia
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SOCIAL MEDIA 



APPLICATION



Gene cluster identification

Protein interactions

Gene-disease associations

Protein-disease associations

Biomedical Literature
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How to maintain the unstructured biomedical 
and clinical information ??
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DOMAIN KNOWLEDGE BASE

Image credit: [31]
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16 Image credit: [32]
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    Exponential 
Unstructured Data

Structured Data

Text Mining



Entity 
Extraction

Patient Data De-Identification 
(Electronic Medical Records)
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01

02

Raw Electronic 
Medical Record

De-Identified Medical 
Record. Mr. John is a 60 year old white male with 

a history of diabetes mellitus who 
underwent a surgery on November 15. 
He was transferred to Valwatnal 
Community Hospital for endoscopy.

       
Mr. <XXX_Patient> is a <XXX_AGE> old 
white male with a history of diabetes 
mellitus who underwent a surgery on 
<XXX_DATE>. He was transferred to 
<XXX_Hospital for endoscopy.

Problem Statement



Modern 
Portfolio 
Presentation

You can simply impress your audience and 
add a unique zing and appeal to your 
Presentations. Easy to change colors, 
photos and Text. Get a modern 
PowerPoint  Presentation that is beautifully 
designed. You can simply impress your 
audience and add a unique zing and 
appeal to your Presentations. Easy to 
change colors, photos and Text. Get a 
modern PowerPoint  Presentation that is 
beautifully designed. 

Admission Date :
06/07/1999
Report Status :
Signed
Discharge Date :
06/13/1999
HISTORY OF PRESENT ILLNESS :
Essentially , Mr. Cornea is a 60 year old male who noted the onset of dark urine during early January .
He underwent CT and ERCP at the Lisonatemi Faylandsburgnic, Community Hospital with a stent placement 
and resolution of jaundice .
He underwent an ECHO and endoscopy at Ingree and Ot of Weamanshy Medical Center on April 28 .
He was found to have a large , bulging , extrinsic mass in the lesser curvature of his stomach .
Fine needle aspiration showed atypical cells , positively reactive mesothelial cells .
MEDICATIONS PRIOR TO ADMISSION :
Hydrochlorothiazide 25 mg q.d. , Clonidine 0.1 mg p.o. q.d. , baclofen 5 mg p.o. t.i.d.
HOSPITAL COURSE :
Basically , patient underwent a subtotal gastrectomy on the 7th of June by Dr. Kotefooksshuff .

Date

Date

Patient Name Hospital Name

Physician Name



Motivation

Use big image
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▪ Automatically augmenting patient databases

▪ Unavailability of clinical records for research (even for de-identification) without 
being de-identified



Challenges

▪ Inter PHI ambiguity: PHI terms overlap with the non-PHI terms. 

                 Brown (Doctor name) vs. brown (non-PHI)

▪ Intra PHI ambiguity: One candidate word seems to belong to two or many 
different PHI terms. 

                 August (Patient name) vs. August (Date)

▪ Lexical Variation: For example, variation of the entities such as the ‘50 yo 
m’, ‘50 yo M’, ‘55 YO MALE’

▪ Terminological variation and irregularities: For example ‘3041023MARY’ 
is the combination of two different PHI categories ‘3041023’ which 
represents the MEDICALRECORD and ‘MARY’ which is another PHI 
category23
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System Algorithm Lexical Syntactic Semantics

Guo et 
al.[7]

SVM Word , Capitalization, Prefixes/Suffixes, Word 
Length, Numbers, Regular Expression

POS(Word) Entity Extract by 
ANNIE(Doc, Hosp, 
Loc)

Szarvas 
et al.[8]

Decision
Tree

Word Length, Capitalization, Numbers, 
Regular Expression, Token Frequency

None Dictionary Terms 
(Names , US Loc, 
Counties, cities, 
Diseases, Non PHI), 
Section Headings

Uzuner et 
al. [9]

SVM Word , Lexical Bigrams, Capitalization, 
Punctuation,  Numbers, Word Length

POS( Word+2 
surrounding)

MeSH ID, dictionary 
Terms(Names, US 
and word locations, 
hospital name)

Wellner 
et al. [10]

CRF Word Unigram/Bigram, Surroundings word, 
Prefixes/Suffixes, capitalization, Numbers, 
Regular Expression

None Dictionary Terms ( US 
states, months, 
General English 
Terms)

Aramaki  
et al. [11]

CRF Word, Surroundings words, capitalization, 
Word Length, Regular Exp, Sentence 
Position & Length

POS( Word+2 
surroundings 
word)

Dictionary Terms 
(Names and Loc)



Feature Engineering

� Bag-of-words
� Part-of-speech (POS) tags
� POS tag of current and surrounding token 
� Contextual features
� Sentence information
� Affixes
� Orthographic features
� Word shapes
� Section information 
� Task specific features
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Dataset (i2b2 2014)
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PROPOSED APPROACH (Elman RNN)
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 PROPOSED APPROACH (Jordan RNN)
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PHI Category CRF CRF+PSO Elman Jordan

PATIENT 58.95 59.26 88.89 91.30

DOCTOR 79.08 81.02 83.26 85.84

HOSPITAL 60.39 62.51 78.03 76.41

LOCATION 55.56 55.13 47.83 61.90

PHONE 78.26 78.89 88.00 80.00

ID 74.44 75.41 90.31 91.66

DATE 94.69 95.14 96.74 96.83

OVERALL 81.39 82.58 89.22 90.18

Results with PSO



Medical Sentiment Analysis 
Social-media Texts (Medical Blogs)

3
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Sample Medical Blog-post
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Who is Talking?

34



Why Not???  Sentiment Analysis 
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Problem Statement

▷ To prioritize user blog post over two medical 
sentiment aspects:

1. Status of health condition
2. Outcome of treatment 
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Medical Condition

Black

Is the color of coal, ebony, and 
of outer space. It is the 
darkest color, the result of 
the absence of or complete 
absorption of light.

37



Medication
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Proposed Approach (Single Task Learning)
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Results

Task 1: Medical Condition Task 2: Medication

Models Precision Recall F-Score Precision Recall F-Score

Baseline 1: SVM 0.42 0.49 0.43 0.74 0.76 0.75

Baseline 2: Random Forest 0.45 0.48 0.46 0.72 0.73 0.73

Baseline 3: MLP 0.41 0.43 0.46 0.74 0.75 0.74

Proposed Approach (CNN) 0.68 0.60 0.63 0.86 0.77 0.82

40



Method 2: Multi-task Learning
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Multi-tasking in NLP

Image Credit:[35]



MTL methods for Deep Learning

     Hard parameter sharing                                              Soft parameter sharing

Image Credit:[36]



Benefits of MTL

▷ Regularization:  it reduces the risk of overfitting as well as the 
Rademacher complexity of the model

▷ Representation bias: prefer representations that other tasks 
also prefer. This will also help the model to generalize to new 
tasks in the future

▷ Attention focusing: focus its attention on those features that 
actually matter as other tasks will provide additional evidence 
for the relevance or irrelevance of those features.



Feature Space
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Shared Private Model Goal



Adversarial Learning

Image Credit: [37]



Adversarial Net Framework

Image Credit: [37]



Proposed Approach (Multi Task Learning)

48



Results

Task 1: Medical Condition Task 2: Medication

Models Precision Recall F-Score Precision Recall F-Score

Baseline 1: MT-LSTM 63.40 61.38 62.37 88.23 77.38 82.45

Baseline 2: ST-LSTM 63.19 62.47 62.83 85.94 77.46 81.48

Proposed Approach 66.82 63.61 65.18 85.83 81.79 83.76
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Error Analysis
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Approach-3
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Result
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Disease wise Analysis (Medical Condition) 
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F1: ‘CNN+Emotion (coarse) ’, F2: ‘CNN+Emotion (fine)’, F3: ‘CNN+Sentiment word feature’, F4: ‘CNN+Textual 
Content Feature’, F5: ‘Personality’, F6: ‘Sarcasm’ 



Disease wise Analysis (Medication)
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F1: ‘CNN+Emotion (coarse) ’, F2: ‘CNN+Emotion (fine)’, F3: ‘CNN+Sentiment word feature’, F4: ‘CNN+Textual 
Content Feature’, F5: ‘Personality’, F6: ‘Sarcasm’ 



Pharmacovigilance Mining
Social-media Texts (Medical Blogs)
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56Slide credit: [33]
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How it Begin??

   

                                  “Secrets of Seroxat”

      BBC Documentary: Panorama broadcasted in 2001

                50-minute programme about paroxetine



Crowd Opinion

The programme attracted a record response, including some

65,000 : telephone calls

124,000 : website hits

1,374: emails



Paroxetine, Panorama and user reporting of ADRs: Consumer intelligence 
matters in clinical practice and post-marketing drug
surveillance

Medawar, C., Herxheimer, A., Bell, A., & Jofre, S. (2002). Paroxetine, Panorama and user reporting of ADRs: 
Consumer intelligence matters in clinical practice and post‐marketing drug surveillance. International Journal of Risk & 
Safety in Medicine, 15(3, 4), 161-169.

FIRST STUDY EXPLORING CROWD INTELLIGENCE



Crowd Intelligence Matters !!

● “Dr Healy confirmed what I already knew. My husband shot himself after 4 days on Seroxat 
never having been suicidal in his life. . .”

● “I took Seroxat 2 years ago because I have a breathing condition called ‘chronic 

hyperventilation syndrome’ which is exacerbated by stress and anxiety. I have never been 

depressed or had suicidal feelings. However I was prescribed Seroxat to reduce stress & 

anxiety. A day or two after taking the pills I (went) into a severe state of mental turmoil. I 
felt really suicidal. It was so severe that all I did was stay in bed for two or three days. 
Fortunately I recognised Seroxat and stopped taking it immediately.” 



63Image credit: [33]



Problem Statement
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Proposed Approach
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Results

           Model Twitter CADEC MEDLINE

ST-BLSTM 57.3 51.1 71.91

ST-CNN 67.1 42.0 70.17

CRNN 
(Huynh et al.,2016) 64.9 48.2 75.5

RCNN 
(Huynh et al.,2016) 63.6 43.6 74.0

MT-BLSTM 
(Chowdhury et al.,2016) 63.19 57.62 74.0

MT-BLSTM-Attention
(Chowdhury et al.,2016) 65.73 58.27 77.95

Proposed Approach 69.69 65.58 82.18
66



Conclusion

67

● Explored the various unstructured form of biomedical text and its application in solving 
real-world problem.

● Explored deep learning solution based on Elman and Jordan Deep Learning framework for 
solving patient data de-identification task.

● Exploited the sentiment analysis in medical domain and neural network approach to 
address the task.

● Explored the unified multi-task learning framework for pharmacovigilance mining that is 
generic and easily adaptable to extract the pharmacovigilance information from any form of 
text.
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